This article was downloaded by: [Tomsk State University of Control Systems and Radio]

On: 20 February 2013, At: 12:41

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH,

UK

Molecular Crystals and Liquid Crystals

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gmcl16

Structureless Anomaly in the TMTTF₂X Family

C. Coulon ^a , S. S.P. Parkin ^a & R. Laversanne ^b

^a I.B.M. Research Laboratory, 5600 Cottle Road, San Jose, CA, 95193

^b C.R.P.P. Domaine Universitaire, 33405, Talence Cedex, France

Version of record first published: 17 Oct 2011.

To cite this article: C. Coulon , S. S.P. Parkin & R. Laversanne (1985): Structureless Anomaly in the TMTTF $_2$ X Family, Molecular Crystals and Liquid Crystals, 119:1, 325-328

To link to this article: http://dx.doi.org/10.1080/00268948508075180

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages

whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Mol. Cryst. Liq. Cryst. 1985, Vol. 119, pp. 325-328 0026-8941/85/1194-0325/\$10.00/0
© 1985 Gordon and Breach, Science Publishers, Inc. and OPA Ltd. Printed in the United States of America

STRUCTURELESS ANOMALY IN THE TMTTF2X FAMILY

C. COULON AND S.S.P. PARKIN
I.B.M. Research Laboratory, 5600 Cottle Road, San Jose, CA 95193

R. LAVERSANNE

C.R.P.P. Domaine Universitaire, 33405 Talence Cedex, France

Abstract A new type of high temperature anomaly, seen as an abrupt change in slope of thermopower and conductivity in the temperature range 100-200 K, is observed in several (TMTTF)₂X salts. This anomaly is different from anion ordering phase transitions in several respects: at the anomaly no structural change has been found and the anomaly decreases much more rapidly with pressure. We suggest these anomalies may reflect some sort of electron localisation process.

I-INTRODUCTION

Phase transitions which have been found in the TMTTF₂X and (TMTSeF)₂X families may be divided into two classes- those labelled as anion ordering transitions and those related to the formation of antiferromagnetic or spin-Peierls instabilities¹. Recently² an anomaly in conductivity has been observed in several salts of TMTTF containing anions of the form MF₆ which appears to be a signature of a 'phase transition' belonging to neither of these two classes. We present thermopower data which confirms the existence of such a transition and we show the same type of anomaly is seen in salts containing tetrahedral anions thus suggesting the need for a new class of 'phase transitions' in the (TMTTF)₂X salts.

II-RESULTS

Crystals were prepared using standard electrochemical techniques. The (TMTTF)₂SbF₆ samples used in this study were taken from the same batch as those used in ref. 1.

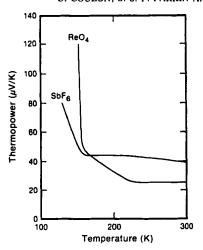


Figure 1: Thermopower versus temperature curves for (TMTTF)₂ReO₄ and (TMTTF)₂SbF₆.

Thermopower versus temperature curves are shown in figure 1 for (TMTTF)₂ReO₄ and (TMTTF)₂SbF₆. There is an abrupt change in slope near 155 K for the SbF₆ salt which is the same temperature at which a change in the gradient of the conductivity versus temperature curve has earlier been reported (these data are reproduced in figure 3). X-ray studies indicate no change in crystal structure^{2,3}.

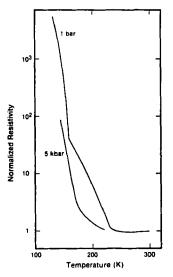


Figure 2: Normalised resistivity versus termperature curves for (TMTTF)₂ReO₄ at ambient pressure and 5 kbar.

Figure 1 shows there are two anomalies in the thermopower curve for the ReO_4 salt near 225 K and 160 K respectively. The low temperature anomaly

at 160 K is associated with ordering of the ReO₄ anions⁴ which as found for all the (TMTTF)₂X compounds are disordered at high temperatures¹. No significant structural change (symmetry, lattice parameters) was detected near 225 K where the second anomaly is observed³. Conductivity data for (TMTTF)₂ReO₄ are shown in figure 2: two changes in slope are clearly visible at temperatures similar to those indicated by the thermopower data. Figure 2 also includes conductivity data under pressure for the ReO₄ salt: these data suggest that a moderate pressure will suppress the upper transition but has little effect on the anion order-disorder transition temperature. We have checked the reliability of these pressure experiments by repeating the ambient pressure measurement following the high pressure studies and reproducing the ambient pressure curve.

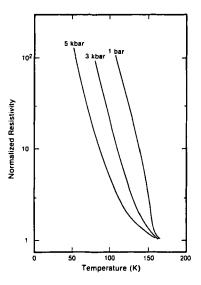


Figure 3: Normalised resistivity versus termperature curves for (TMTTF)₂SbF₆ at 1 bar, 3 and 5 kbar.

Data under pressure for (TMTTF)₂SbF₆ are shown in figure 3 and suggest that the 155 K anomaly is washed out at low pressures in agreement with the ReO₄ data. However even though no transition is indicated by conductivity data, we have found through extensive studies on TMTTF systems containing mixture of anions, that the transition may still be detected through thermopower studies. The pressure data must therefore be treated circumspectly. A detailed description of these data is given elsewhere.

We have summarised in table 1 temperatures of different types of phase transitions observed in a number of $(TMTTF)_2X$ compounds: we have also indicated in the table where anomalies are seen in susceptibility, conductivity/thermopower and in x-ray studies.

	Anion Ordering	Magnetic/ Spin-Peierls	Structureless Anomaly	Anomaly in		
				x	ø/S	X-ray
SCN	160			N	Y	Y
		AF9		Y	t	*
NO ₃	40			Y	ŧ	Y
BF₄	40			Y	ŧ	Y
ClÕ₄	75			Y	Ý	Ÿ
ReO ₄			225	N	Ý	N
	160			Y	Ÿ	Y
Br		AF11		Ÿ	Ÿ	Ň
SbFz		· -	160	N	Ý	N

Y

N Y

C. COULON, S. S. P. PARKIN AND R. LAVERSANNE Table 1: Transition Temperatures in the (TMTTF)₂X Family

AF and SP correspond to antiferromagnetic and spin-Peierls instabilities

sample too resistive to make o or S measurements at low T.

AF8

SP15

SP15

no data available at the transition temperature-precursor effects seen in some cases^{1,2}

95

III-CONCLUSIONS

AsF₆

PF₆

We have shown the existence of a new class of 'phase transitions' in the TMTTF₂X materials. This transition is characterised by abrupt changes in slope of conductivity and thermopower curves with no corresponding change in crystal symmetry or structure. Application of moderate pressure seems to suppress this transition. We have shown the transition is a general phenomenon found in various (TMTTF)₂X salts containing anions of different symmetries.

ACKNOWLEDGEMENTS

We thank V. Lee and E.M. Engler for preparing some of the samples of (TMTTF)₂ ReO₄ used in this work. We much appreciate useful discussions with Dr. J.B. Torrance and Dr. Sietse Oostra.

REFERENCES

- For example see R. Comes, P. Bernier, J.J. Andre and J. Rouxel, editors J. Physique C3 (1983).
- R. Laversanne, C. Coulon, B. Gallois, J.P. Pouget and R.Moret, J. Physique Lett 45, L393 (1984).
- 3. S. Oostra and S.S.P. Parkin (unpublished)
- S.S.P. Parkin, J.J. Mayerle and E.M. Engler, J. de Phys. 44, C3-1105 (1983).